Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis.

نویسندگان

  • Weicheng Liu
  • Yunzi Chen
  • Maya Aharoni Golan
  • Maria L Annunziata
  • Jie Du
  • Urszula Dougherty
  • Juan Kong
  • Mark Musch
  • Yong Huang
  • Joel Pekow
  • Changqing Zheng
  • Marc Bissonnette
  • Stephen B Hanauer
  • Yan Chun Li
چکیده

The inhibitory effects of vitamin D on colitis have been previously documented. Global vitamin D receptor (VDR) deletion exaggerates colitis, but the relative anticolitic contribution of epithelial and nonepithelial VDR signaling is unknown. Here, we showed that colonic epithelial VDR expression was substantially reduced in patients with Crohn's disease or ulcerative colitis. Moreover, targeted expression of human VDR (hVDR) in intestinal epithelial cells (IECs) protected mice from developing colitis. In experimental colitis models induced by 2,4,6-trinitrobenzenesulfonic acid, dextran sulfate sodium, or CD4(+)CD45RB(hi) T cell transfer, transgenic mice expressing hVDR in IECs were highly resistant to colitis, as manifested by marked reductions in clinical colitis scores, colonic histological damage, and colonic inflammation compared with WT mice. Reconstitution of Vdr-deficient IECs with the hVDR transgene completely rescued Vdr-null mice from severe colitis and death, even though the mice still maintained a hyperresponsive Vdr-deficient immune system. Mechanistically, VDR signaling attenuated PUMA induction in IECs by blocking NF-κB activation, leading to a reduction in IEC apoptosis. Together, these results demonstrate that gut epithelial VDR signaling inhibits colitis by protecting the mucosal epithelial barrier, and this anticolitic activity is independent of nonepithelial immune VDR actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vitamin D/VDR signaling pathway ameliorates 2,4,6-trinitrobenzene sulfonic acid-induced colitis by inhibiting intestinal epithelial apoptosis

Increasing epidemiological data have suggested a link between vitamin D deficiency and the incidence of inflammatory bowel disease (IBD). In the present study, we confirmed that vitamin D deficiency, as well as the decreased local expression of vitamin D receptor (VDR), was prevalent in an IBD cohort. The excessive apoptosis of intestinal epithelial cells (IECs) partly accounts for the developm...

متن کامل

The endocrine vitamin D system in the gut.

The active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) has important regulatory actions in the gut through endocrine and probably also intracrine, autocrine and paracrine mechanisms. By activating the vitamin D receptor (VDR), which is expressed at a high level in the small intestine and colon, 1,25(OH)2D3 regulates numerous genes that control gut physiology and homeostasis. 1,...

متن کامل

Curcumin inhibits interferon-γ signaling in colonic epithelial cells.

Curcumin (diferulolylmethane) is an anti-inflammatory phenolic compound found effective in preclinical models of inflammatory bowel diseases (IBD) and in ulcerative colitis patients. Pharmacokinetics of curcumin and its poor systemic bioavailability suggest that it targets preferentially intestinal epithelial cells. The intestinal epithelium, an essential component of the gut innate defense mec...

متن کامل

Vitamin D receptor pathway is required for probiotic protection in colitis.

Low expression of vitamin D receptor (VDR) and dysfunction of vitamin D/VDR signaling are reported in patients with inflammatory bowel disease (IBD); therefore, restoration of VDR function to control inflammation in IBD is desirable. Probiotics have been used in the treatment of IBD. However, the role of probiotics in the modulation of VDR signaling to effectively reduce inflammation is unknown...

متن کامل

Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation.

BACKGROUND Vitamin D, an important modulator of the immune system, has been shown to protect mucosal barrier homeostasis. This study investigates the effects of vitamin D deficiency on infection-induced changes in intestinal epithelial barrier function in vitro and on Citrobacter rodentium-induced colitis in mice. METHODS Polarized epithelial Caco2-bbe cells were grown in medium with or witho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 123 9  شماره 

صفحات  -

تاریخ انتشار 2013